#include <iomanip>
double xglu(double const& x)
{
return 1.7 * pow(x, -0.1) * pow(1 - x, 5);
}
int main()
{
const apfel::Grid g{{
apfel::SubGrid{100,1e-5,5},
apfel::SubGrid{60,1e-1,5},
apfel::SubGrid{50,6e-1,3},
apfel::SubGrid{50,8e-1,3}}};
const double Q2 = 200000;
const double muF2 = Q2;
const double M2 = 2;
const double xi = Q2 / M2;
const double xiF = M2 / muF2;
const double lxi = log(xi);
const double lxi2 = lxi * lxi;
const double lxiF = log(xiF);
const double eta = Q2 / ( Q2 + 4 * M2 );
const int nf = 3;
const apfel::Operator Om022ns = Om022nsc + lxi * Om022nsl + lxi2 * Om022nsl2;
const apfel::Operator Om022ps = Om022psc + lxi * Om022psl + lxi2 * Om022psl2 + lxiF * Om022psf + lxi * lxiF * Om022pslf;
const apfel::Operator Om022g = Om022gc + lxi * Om022gl + lxi2 * Om022gl2 + lxiF * Om022gf + lxi * lxiF * Om022glf;
const apfel::Operator Om0L2ps = Om0L2psc + lxi * Om0L2psl + lxiF * Om0L2psf;
const apfel::Operator HL2g = ( - beta0 * cL1g + p0gg * cL1g + p0qg * cL1ns ) * lxi
+ ( - beta0 * cL1g + p0gg * cL1g ) * lxiF + cL2g + a1Qg * cL1ns;
const apfel::Operator H22g = ( p0qg * ( p0gg + p0ns ) / 2 - beta0 * p0qg / 2 ) * lxi2
+ ( p1qg - beta0 * c21g + p0ns * a1Qg + p0gg * c21g + p0qg * c21ns ) * lxi
+ ( p0qg * p0gg - beta0 * p0qg ) * lxi *lxiF
+ ( - beta0 * ( c21g + a1Qg ) + p0gg * ( c21g + a1Qg ) ) * lxiF
+ c22g + a2Qg;
+ ( p1ps + p0gq * c21g ) * lxi
+ p0gq * ( a1Qg + c21g ) * lxiF + c22ps + aPS2Qq;
const apfel::Operator L22NSq = - beta0Q * lxi2 * p0ns / 2 + ( p1ns - beta0Q * c21ns ) * lxi
+ c22nsp + aNS2qqQ;
const std::vector<double> xlha = {1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 3e-1, 5e-1, 7e-1, 9e-1};
std::cout << std::scientific << std::endl;
std::cout << "xi = " << xi << std::endl;
std::cout << "\nO(as) gluon coefficient functions" << std::endl;
std::cout << "Asymptotic constructed vs. asymptotic explicit" << std::endl;
std::cout << " x \t"
<< " Cm21g \t"
<< " CmL1g \t"
<< std::endl;
for (double const& x : xlha)
{
std::cout << std::setprecision(4) << x << "\t"
<< std::endl;
}
std::cout << std::endl;
std::cout << "Exact vs. asymptotic" << std::endl;
std::cout << " x \t"
<< " Cm21g \t"
<< " CmL1g \t"
<< std::endl;
for (double const& x : xlha)
{
std::cout << std::setprecision(4) << x << "\t"
<< std::endl;
}
std::cout << std::endl;
std::cout << "O(as^2) non-singlet coefficient functions" << std::endl;
std::cout << "Asymptotic constructed vs. asymptotic explicit" << std::endl;
std::cout << " x \t"
<< " Cm22ns \t"
<< " CmL2ns \t"
<< std::endl;
for (double const& x : xlha)
{
std::cout << std::setprecision(4) << x << "\t"
<< std::endl;
}
std::cout << std::endl;
std::cout << "Exact vs. asymptotic" << std::endl;
std::cout << " x \t"
<< " Cm22ns \t"
<< " CmL2ns \t"
<< std::endl;
for (double const& x : xlha)
{
std::cout << std::setprecision(4) << x << "\t"
<< std::endl;
}
std::cout << std::endl;
std::cout << "O(as^2) pure-singlet coefficient functions" << std::endl;
std::cout << "Asymptotic constructed vs. asymptotic explicit" << std::endl;
std::cout << " x \t"
<< " Cm22ps \t"
<< " CmL2ps \t"
<< std::endl;
for (double const& x : xlha)
{
std::cout << std::setprecision(4) << x << "\t"
<< std::endl;
}
std::cout << std::endl;
std::cout << "Exact vs. asymptotic" << std::endl;
std::cout << " x \t"
<< " Cm22ps \t"
<< " CmL2ps \t"
<< std::endl;
for (double const& x : xlha)
{
std::cout << std::setprecision(4) << x << "\t"
<< std::endl;
}
std::cout << std::endl;
std::cout << "O(as^2) gluon coefficient functions" << std::endl;
std::cout << "Asymptotic constructed vs. asymptotic explicit" << std::endl;
std::cout << " x \t"
<< " Cm22g \t"
<< " CmL2g \t"
<< std::endl;
for (double const& x : xlha)
{
std::cout << std::setprecision(4) << x << "\t"
<< std::endl;
}
std::cout << std::endl;
std::cout << "Exact vs. asymptotic" << std::endl;
std::cout << " x \t"
<< " Cm22g \t"
<< " CmL2g \t"
<< std::endl;
for (double const& x : xlha)
{
std::cout << std::setprecision(4) << x << "\t"
<< std::endl;
}
std::cout << std::endl;
return 0;
}
O(αs2) constant term of eq (B.4) of https://arxiv.org/pdf/hep-ph/9612398.pdf.
Definition matchingconditions_sl.h:255
O(αs2) constant term of eq (B.1) of https://arxiv.org/pdf/hep-ph/9612398.pdf.
Definition matchingconditions_sl.h:185
O(αs2) constant term of eq (B.3) of https://arxiv.org/pdf/hep-ph/9612398.pdf.
Definition matchingconditions_sl.h:220
O(αs) gluon coefficient function for F2.
Definition zeromasscoefficientfunctionsunp_sl.h:46
O(αs) non-singlet coefficient function for F2.
Definition zeromasscoefficientfunctionsunp_sl.h:34
O(αs2) gluon coefficient function for F2.
Definition zeromasscoefficientfunctionsunp_sl.h:138
O(αs2) non-singlet-plus coefficient function for F2.
Definition zeromasscoefficientfunctionsunp_sl.h:97
O(αs2) pure-singlet coefficient function for F2.
Definition zeromasscoefficientfunctionsunp_sl.h:127
O(αs) gluon coefficient function for FL.
Definition zeromasscoefficientfunctionsunp_sl.h:67
O(αs) non-singlet coefficient function for FL.
Definition zeromasscoefficientfunctionsunp_sl.h:57
O(αs2) gluon coefficient function for FL.
Definition zeromasscoefficientfunctionsunp_sl.h:189
O(αs2) non-singlet-plus coefficient function for FL.
Definition zeromasscoefficientfunctionsunp_sl.h:150
O(αs2) pure-singlet coefficient function for FL.
Definition zeromasscoefficientfunctionsunp_sl.h:178
O(αs) gluon coefficient function for F2. Constant term.
Definition massivezerocoefficientfunctionsunp_sl.h:40
O(αs) gluon coefficient function for F2. Single-log term.
Definition massivezerocoefficientfunctionsunp_sl.h:51
O(αs2) gluon coefficient function for F2. Constant term.
Definition massivezerocoefficientfunctionsunp_sl.h:228
O(αs2) gluon coefficient function for F2. Single-log(μF) term.
Definition massivezerocoefficientfunctionsunp_sl.h:261
O(αs2) gluon coefficient function for F2. Double-log term.
Definition massivezerocoefficientfunctionsunp_sl.h:250
O(αs2) gluon coefficient function for F2. Single-log term.
Definition massivezerocoefficientfunctionsunp_sl.h:239
O(αs2) gluon coefficient function for F2. Mixed-double-log term.
Definition massivezerocoefficientfunctionsunp_sl.h:272
O(αs2) non-singlet coefficient function for F2. Constant term.
Definition massivezerocoefficientfunctionsunp_sl.h:79
O(αs2) non-singlet coefficient function for F2. Double-log term.
Definition massivezerocoefficientfunctionsunp_sl.h:105
O(αs2) non-singlet coefficient function for F2. Single-log term.
Definition massivezerocoefficientfunctionsunp_sl.h:92
O(αs2) pure-singlet coefficient function for F2. Constant term.
Definition massivezerocoefficientfunctionsunp_sl.h:140
O(αs2) pure-singlet coefficient function for F2. Single-log(μF) term.
Definition massivezerocoefficientfunctionsunp_sl.h:173
O(αs2) pure-singlet coefficient function for F2. Double-log term.
Definition massivezerocoefficientfunctionsunp_sl.h:162
O(αs2) pure-singlet coefficient function for F2. Single-log term.
Definition massivezerocoefficientfunctionsunp_sl.h:151
O(αs2) pure-singlet coefficient function for F2. Mixed-double-log term.
Definition massivezerocoefficientfunctionsunp_sl.h:184
O(αs) gluon coefficient function for FL. Constant term.
Definition massivezerocoefficientfunctionsunp_sl.h:62
O(αs2) gluon coefficient function for FL. Constant term.
Definition massivezerocoefficientfunctionsunp_sl.h:283
O(αs2) gluon coefficient function for FL. Single-log(μF) term.
Definition massivezerocoefficientfunctionsunp_sl.h:305
O(αs2) gluon coefficient function for FL. Single-log term.
Definition massivezerocoefficientfunctionsunp_sl.h:294
O(αs2) non-singlet coefficient function for FL. Constant term.
Definition massivezerocoefficientfunctionsunp_sl.h:118
O(αs2) non-singlet coefficient function for FL. Single-log term.
Definition massivezerocoefficientfunctionsunp_sl.h:129
O(αs2) pure-singlet coefficient function for FL. Constant term.
Definition massivezerocoefficientfunctionsunp_sl.h:195
O(αs2) pure-singlet coefficient function for FL. Single-log(μF) term.
Definition massivezerocoefficientfunctionsunp_sl.h:217
O(αs2) pure-singlet coefficient function for FL. Single-log term.
Definition massivezerocoefficientfunctionsunp_sl.h:206
O(αs) gluon coefficient function for F2. See eq. (53) of https://arxiv.org/pdf/1001....
Definition massivecoefficientfunctionsunp_sl.h:59
O(αs2) gluon coefficient function proportional to ln(Q2/M2) for F2. Uses the fortran routines in 'src...
Definition massivecoefficientfunctionsunp_sl.h:177
O(αs2) pure-singlet coefficient function proportional to ln(Q2/M2) for F2. Uses the fortran routines ...
Definition massivecoefficientfunctionsunp_sl.h:206
O(αs2) gluon coefficient function for F2. Uses the fortran routines in 'src/dis/hqcoef....
Definition massivecoefficientfunctionsunp_sl.h:122
O(αs2) non-singlet coefficient function for F2. See Appendix A of https://arxiv.org/pdf/hep-ph/960130...
Definition massivecoefficientfunctionsunp_sl.h:92
O(αs2) pure-singlet coefficient function for F2. Uses the fortran routines in 'src/dis/hqcoef....
Definition massivecoefficientfunctionsunp_sl.h:149
O(αs) gluon coefficient function for FL.
Definition massivecoefficientfunctionsunp_sl.h:71
O(αs2) gluon coefficient function proportional to ln(Q2/M2) for FL. Uses the fortran routines in 'src...
Definition massivecoefficientfunctionsunp_sl.h:191
O(αs2) pure-singlet coefficient function proportional to ln(Q2/M2) for FL. Uses the fortran routines ...
Definition massivecoefficientfunctionsunp_sl.h:221
O(αs2) gluon coefficient function for FL. Uses the fortran routines in 'src/dis/hqcoef....
Definition massivecoefficientfunctionsunp_sl.h:135
O(αs2) non-singlet coefficient function for FL. See Appendix A of https://arxiv.org/pdf/hep-ph/960130...
Definition massivecoefficientfunctionsunp_sl.h:109
O(αs2) pure-singlet coefficient function for FL. Uses the fortran routines in 'src/dis/hqcoef....
Definition massivecoefficientfunctionsunp_sl.h:163
The Distribution class defines one of the basic objects of APFEL++. This is essentially the discretis...
Definition distribution.h:22
The Grid class defines ab object that is essentially a collection of "SubGrid" objects plus other glo...
Definition grid.h:22
double Evaluate(double const &x) const
Function that evaluates the interpolated function on the joint grid.
Derived class from Expression to implement the Null operator (zero).
Definition expression.h:119
The Operator class defines the basic object "Operator" which is essentially the convolution on the gr...
Definition operator.h:22
Space-like O(αs) gluon-gluon unpolarised splitting function.
Definition splittingfunctionsunp_sl.h:87
Space-like O(αs) gluon-quark unpolarised splitting function.
Definition splittingfunctionsunp_sl.h:76
Space-like O(αs) non-singlet unpolarised splitting function.
Definition splittingfunctionsunp_sl.h:50
Space-like O(αs) quark-gluon unpolarised splitting function.
Definition splittingfunctionsunp_sl.h:63
Space-like O(αs2) non-singlet-plus unpolarised splitting function.
Definition splittingfunctionsunp_sl.h:108
Space-like O(αs2) pure-singlet unpolarised splitting function.
Definition splittingfunctionsunp_sl.h:135
Space-like O(αs2) quark-gluon unpolarised splitting function.
Definition splittingfunctionsunp_sl.h:148
Class for the x-space interpolation SubGrids.
Definition subgrid.h:23
The Timer class computes the time elapsed between start and stop.
Definition timer.h:20
void stop(bool const &ForceDisplay=false)
This function stops the timer and reports the elapsed time in seconds since the last time the timer w...
Definition timer.h:36
void start()
This function starts the timer.
Definition timer.h:30
const double eps5
Definition constants.h:57
const double TR
Definition constants.h:147
double beta0qcd(int const &nf)
LO coefficient of the QCD function.