Nanga Parbat 1.1.0
A TMD fitting framework
Public Member Functions | Private Attributes | List of all members
NangaParbat::TrainingCut Class Reference

Derivation of the class Cut to impose Cross Validation cut. More...

#include <Trainingcut.h>

Inheritance diagram for NangaParbat::TrainingCut:
NangaParbat::Cut

Public Member Functions

 TrainingCut (DataHandler const &dataset, std::vector< std::shared_ptr< NangaParbat::Cut > > const &kincuts, double const &TrainingFrac, gsl_rng *rng, int const &NMin=10)
 The "Trainingcut" constructor. More...
 
 TrainingCut (TrainingCut const &cut, bool const &invert=false, std::vector< std::shared_ptr< NangaParbat::Cut > > const &kincuts={})
 The "TrainingCut" copy constructor. More...
 
void EnforceCut ()
 Purely virtual function to be used implemented in the derived class to eforce the cut. More...
 
- Public Member Functions inherited from NangaParbat::Cut
 Cut (Cut const &cut)
 The "Cut" copy constructor. More...
 
 Cut (DataHandler const &dataset, double const &min, double const &max)
 The "Cut" constructor. More...
 
virtual ~Cut ()
 The "Cut" destructor. More...
 
std::valarray< bool > GetMask () const
 Function that returns the cut mask. More...
 

Private Attributes

gsl_rng *const _rng
 
int const _NMin
 

Additional Inherited Members

- Protected Attributes inherited from NangaParbat::Cut
DataHandler const & _dataset
 The dataset to be processed. More...
 
double const _min
 Minimal value. More...
 
double const _max
 Maximal value. More...
 
std::valarray< bool > _mask
 Cut mask. More...
 

Detailed Description

Derivation of the class Cut to impose Cross Validation cut.

Constructor & Destructor Documentation

◆ TrainingCut() [1/2]

NangaParbat::TrainingCut::TrainingCut ( DataHandler const &  dataset,
std::vector< std::shared_ptr< NangaParbat::Cut > > const &  kincuts,
double const &  TrainingFrac,
gsl_rng *  rng,
int const &  NMin = 10 
)

The "Trainingcut" constructor.

Parameters
datasetthe DataHandler object subject to the cuts
kincutsthe vector kinematic cuts
TrainingFracTraining fraction
rngGSL random number object
NMinMinimum number of points below which all points will be included in the training (default: 5)

◆ TrainingCut() [2/2]

NangaParbat::TrainingCut::TrainingCut ( TrainingCut const &  cut,
bool const &  invert = false,
std::vector< std::shared_ptr< NangaParbat::Cut > > const &  kincuts = {} 
)

The "TrainingCut" copy constructor.

Parameters
cutobjects to be copied
invertwhether to invert the map (default: false)
kincutsvector of possible kinematic cuts to enforce (default: empty)

Member Function Documentation

◆ EnforceCut()

void NangaParbat::TrainingCut::EnforceCut ( )
virtual

Purely virtual function to be used implemented in the derived class to eforce the cut.

Implements NangaParbat::Cut.

Member Data Documentation

◆ _NMin

int const NangaParbat::TrainingCut::_NMin
private

◆ _rng

gsl_rng* const NangaParbat::TrainingCut::_rng
private

The documentation for this class was generated from the following file: